skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Dawei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary In both plants and animals, tissue or organ regeneration typically follows wounding, which also activates defense responses against pathogenic microbes and herbivores. Both intrinsic and environmental cues guide the molecular decisions between regeneration and defense. In animal studies, extensive research has highlighted the role of various microbes – including pathogenic, commensal, and beneficial species – in influencing the signaling interplay between immunity and regeneration. Conversely, most plant regeneration studies are conducted under sterile conditions, which leaves a gap in our understanding of how plant innate immunity influences regeneration pathways. Recent findings have begun to elucidate the roles of key defense pathways in modulating plant regeneration and the crosstalk between these two processes. These studies also explore how microbes might influence the molecular choice between defense and regeneration in plants. This review examines the molecular mechanisms governing the balance between plant regeneration and innate immunity, with a focus on the emerging role of aging and microbial interactions in shaping these processes. 
    more » « less
  2. ABSTRACT De novo root regeneration (DNRR) is a developmental process that regenerates adventitious roots from wounded tissues. Phytohormone signaling pathways involved in microbial resistance are mobilized after cutting and influence de novo root regeneration. Microbes may positively or negatively influence the development and stress responses of a plant. However, most studies on the molecular mechanisms of de novo organogenesis are performed in aseptic conditions. Thus, the potential crosstalk between organ regeneration and biotic stresses is underexplored. Here, we report the development of a versatile experimental system to study the impact of microbes on DNRR. Using this system, we found that bacteria inhibited root regeneration by activation of, but not limited to, pathogen-associated molecular pattern (PAMP)-triggered immunity. Sensing bacteria-derived flagellin 22 peptide (flg22) inhibited root regeneration by interfering with the formation of an auxin maximum at the wound site. This inhibition relies on the receptor complex that recognizes microbial patterns but may bypass the requirement of salicylic acid signaling. 
    more » « less
  3. Köhler, Claudia (Ed.)
    Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration. 
    more » « less
  4. This work demonstrates a modular design strategy based on the supramolecular assembly of multidomain peptides to fabricate reduction-responsive cell penetrating nanofibers (CPNs), which hold great promise for selective targeting of cancer therapeutics to tumor cells. 
    more » « less
  5. SUMMARY The phytohormone cytokinin plays a significant role in nearly all aspects of plant growth and development. Cytokinin signaling has primarily been studied in the dicot model Arabidopsis, with relatively little work done in monocots, which include rice (Oryza sativa) and other cereals of agronomic importance. The cytokinin signaling pathway is a phosphorelay comprised of the histidine kinase receptors, the authentic histidine phosphotransfer proteins (AHPs) and type‐B response regulators (RRs). Two negative regulators of cytokinin signaling have been identified: the type‐A RRs, which are cytokinin primary response genes, and the pseudo histidine phosphotransfer proteins (PHPs), which lack the His residue required for phosphorelay. Here, we describe the role of the ricePHPgenes. Phylogenic analysis indicates that the PHPs are generally first found in the genomes of gymnosperms and that they arose independently in monocots and dicots. Consistent with this, the three ricePHPsfail to complement an Arabidopsisphpmutant (aphp1/ahp6). Disruption of the three ricePHPsresults in a molecular phenotype consistent with these elements acting as negative regulators of cytokinin signaling, including the induction of a number of type‐A RR and cytokinin oxidase genes. The triplephpmutant affects multiple aspects of rice growth and development, including shoot morphology, panicle architecture, and seed fill. In contrast to Arabidopsis, disruption of the ricePHPsdoes not affect root vascular patterning, suggesting that while many aspects of key signaling networks are conserved between monocots and dicots, the roles of at least some cytokinin signaling elements are distinct. 
    more » « less